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Diffusive properties of motion on a bumpy plane
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Abstract. We report on experiments studying the statistical properties of the motion of balls on a bumpy
surface. This motion is found to be diffusive. In the direction of the mean flow, the coefficient of diffusion is
found to attain a constant value, independent of the size of the ball and the inclination angle. The diffusion
transverse to the mean flow is characterized by a coefficient which decreases with the inclination of the
plane, and scales with the size of moving ball.

PACS. 05.20.-y Statistical mechanics – 64.60.-i General studies of phase transitions

1 Introduction

The past fifteen years have seen a rapid growth of inter-
est in the behaviour of granular media due to their fasci-
nating properties and wide range of applications in many
industries. A major industrial problem is that of obtain-
ing good mixtures of grains of various sizes and masses.
This difficulty arises from the natural tendencies of gran-
ular systems to segregate due to various effects such as [1]
convection [2–4], diffusion [5,6] and flow [7]. The under-
standing of these mechanisms can lead to more efficient
mixing strategies.

In this paper, we study in detail the motion of balls on
rough surfaces. This is an idealization of what takes place
on top of flowing granular systems: the top layers of such
systems can be regarded as rough surfaces (idealized to
planes) on which grains of various sizes can flow. Our goal
in studying these idealized systems is to understand the
roles of flow and friction and shocks in segregation and
mixing.

We first summarize some of the results of previous ex-
periments done on this system [8,9]. Depending on the
inclination angle, θ, of the rough surface with respect to
the horizontal and the smoothness, Φ = R/r (R is the ra-
dius of the rolling ball and r is that of the surface beads)
three types of behaviour are observed [8] which can be
summarized by a “phase diagram” consisting of three re-
gions, denoted (A), (B) and (C). Region (A) is the pinning
region where the ball quickly comes to a stop regardless of
its initial velocity. In regime (B) the ball reaches a steady
state with a mean constant velocity, Vx, which is inde-
pendent of the initial velocity. Regime (C) corresponds to
the zone where the ball moves down the plane with big
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bounces and does not reach a steady state on the two me-
ter long plane. Experiments performed by Aguirre et al.
[10] evidenced that the existence of these 3 regimes was
independent of the type of rolling ball or surface bead
materials. Moreover they have observed that boundaries
between regimes, in the different phase diagrams, do not
change qualitatively. In the above experimental studies [8,
10], it was found, in regime (B), that the average veloc-
ity of the ball scales with the smoothness, and that the
friction force is viscous, i.e. the velocity is given by the
equation

Vx
√
rg
∝ Φβ sin(θ). (1)

The exponent β was found equal to 1.5 in Riguidel’s ex-
periments and 1.4 in Aguirre’s ones. However, the average
velocity is not as a simple function of R/r as was previ-
ously thought. Even though the details are not known, the
packing fraction does seem to play a role in determining
the average velocity. A recent study [11] found β equal to
1.25 for a packing fraction of the surface of 0.67 which
is smaller than those used in the previously mentioned
studies. Of course, this difference is no longer surprising
since one of our main conclusions is that the geometry
of the system is of crucial importance. Using arguments
like Bagnold’s [12,13] one expects an effective frictional
force proportional to V 2 which would give an average ve-
locity proportional to

√
sin(θ). Recently Batrouni et al.

[14] presented a 1D stochastic model in which geometry
plays a crucial role. This model reproduces most aspects
of the motion of the ball on the rough inclined plane,
including the viscous frictional force and the scaling
with the smoothness. The agreement of this model with
experiments emphasizes the important role played by the



378 The European Physical Journal B

geometry of the surface. In the particular case of region
(B), the trajectory of a sphere on an inclined rough sur-
face can be pictured as a driven random walk where the
fluctuations of the local velocities are due to the collisions
between the moving sphere and the surface grains. An in-
teresting question is whether it is possible to find a charac-
teristic length for the motion and, if so, what influence the
roughness has on it. Molecular Dynamics simulations [15,
16] reproducing the motion of the ball on a rough line or a
rough plane have been performed in parallel with our ex-
periments. After presenting our experimental results, we
will discuss and compare the two. The present study con-
centrates on the experimental characterization of the local
geometrical parameters such as the roughness seen by a
moving sphere and the inclination angle of the rough sur-
face. This paper is organized as follows: the experimental
techniques are described in Section 2. The experimental
results are presented in Section 3 and discussed in Sec-
tion 4.

2 Experimental setup

2.1 The rough surface

The experimental study of the diffusion of a single ball on
a rough surface requires good geometrical control i.e. a
rough surface which is quite disordered and homogeneous,
and an accurately measured inclination angle. So we have
built an experimental device which is quite similar to that
used by Riguidel et al. [8,9]. The control parameters are
the angle θ between the rough surface and the horizon-
tal, and R, the radius of the steel ball which moves on
the plane. r is the radius of the glass beads constituting
the rough surface. We use a two meter long by one meter
wide plane of 1 cm thick glass plate supported by a rigid
metallic frame. The rough surface is made of glass beads
of radius, r, close to (0.53 ± 0.03) mm stuck on adhesive
plastic sheet. The size of these glass beads is kept constant
for all experiments. This technique allows us to obtain a
monolayer of beads which is disordered and roughly homo-
geneous. We have obtained a surface packing fraction of
(0.67± 0.03). This was measured by counting the number
of glass beads in 20 patches of equal area (4 cm2). Typical
ball diameters used in our experiments range between 2.5
and 7 mm. The launched balls are made of steel, with a
density of 7.85 g/cm3, and a well defined sphericity, with
uncertainty less than 0.25 µm. The tolerance in the di-
ameter of the balls is 10.25 µm. The balls are launched
parallel to the rough surface by a mechanism consisting
of a tap with a reservoir. A stepping motor is fixed on the
tap in order to automate the launching. Each time the tap
turns a half rotation, a ball is released while another enters
in the tap. This system allows us to launch a large num-
ber of balls to obtain good statistics. The initial velocity
of the ball (in magnitude and direction) before reaching
the surface needs to be well controlled too. The balls do
not fall directly on the rough plane, but first on a gutter,
which allows control of the direction of the initial velocity.
They arrive on the gutter with practically zero velocity.

The length subsequently travelled on the gutter can be
varied so the initial velocity can be modified. Generally,
in our experiments, the distance travelled on the gutter is
the same and close to 1 cm, the smallest length allowed
by the setup, for all R and θ. So as θ increases, the initial
velocity is also increased. Neglecting friction between the
ball and the gutter, we estimate the typical initial velocity
values to range between 9 to 34 cm/s, i.e. not far from the
mean constant velocity values, except for R = 1.25 mm
and R = 1.5 mm. In these two cases, the initial velocities
are in fact close to 30 cm/s while the mean constant veloc-
ities are close to 7 cm/s, with the inclination angles for the
regime (B) being between 7 and 9.5 degrees. But even if
we study the regime (B), i.e. where the mean constant ve-
locity is independent of the initial velocity, it is important
to launch the ball with the same initial velocity because,
before reaching the mean constant velocity regime, the
ball has a transient motion, which can bias the dispersion
measurements. This transient regime is shorter the closer
the initial velocity is to the mean constant velocity.

2.2 Dispersion measurements

We used two experimental techniques to study ball dif-
fusion on the rough surface in regime (B), i.e. the mean
constant velocity zone. In the first experimental technique
(for longitudinal and transverse dispersion measurements)
the travelled distance is fixed, and the transit time distri-
bution is measured to study the longitudinal dispersion.
In the second one the time interval is fixed close to 1/25
seconds and the travelled distance is measured.

In order to study the transverse dispersion we have
built a metallic collector with 70 bins of adjustable width,
which is made slightly larger than the diameter of the balls
used in the experiments. The walls dividing the bins are
very thin in order not to bias the binning. The experimen-
tal setup for the transverse and longitudinal dispersion is
shown in Figure 1. The distance, L, from the launcher to
the collector can be changed. For a given distance L, a
series of 200 balls are released for each of three different
launching points. The different release positions serve to
avoid having the particles take a preferential path caused
by possible flatness problems or local imperfections in the
2D arrangements of the glass beads of the surface. In this
way the balls reach the collector and enter into the differ-
ent bins giving the corresponding distributions. The ex-
perimental setup for the longitudinal dispersion measure-
ments is as follows. A range of 8 lasers [17] is placed along
the length of the rough plane. A first laser beam is placed
at the release position of the balls for triggering the timer.
The remaining 7 lasers are ranged in the region of the
plane where the ball attains its steady state. These lasers
are separated by equal distances which are adjustable in
units of 5 cm. Symmetrically a range of 8 phototransistors
[18] is placed at the opposite side of the plane. The transit
time of the ball is recorded when it crosses a laser beam.
Finally the last beam is also used to initiate the launch of
a new ball and so on. All measurements are controled by
a computer giving us the transit time distributions of the
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Fig. 1. Experimental setup for measuring transverse and lon-
gitudinal dispersion: (la) steel ball launcher, (R) ball radius R,
(Co) collector, (L) distance between the launcher and the col-
lector, (PC) Personal Computer, (rl) range of lasers, (rp) range
of photodetectors, (r) glass beads radius constituting the rough
surface, (θ) angle between the rough plane and the horizontal.

rolling balls. In regime (B) and for small angles θ some
balls may get trapped [8] in which case these particles are
not considered. These balls have the same dynamics as
the ones which do not get trapped, so even if they are not
taken into account there is no bias in the statistics. For a
given angle θ and radius R, a thousand balls are launched.
The uncertainty in the time is less than ×10−3 s, and in
the distance between two lasers is less than 1 mm. The
experimental techniques described above allow us to ob-
tain “average” information i.e. the ball undergoes many
collisions (typically for 5 cm, the distance between two
successive lasers, the number of collisions is of the order
of 50) so the fluctuations are integrated in space and time.

2.3 Video measurements

We have also recorded the ball trajectories by using a
video system. A CCD camera is placed above the rough
plane far enough from the release point to ensure observ-
ing the mean constant velocity regime. The typical field of
view is 100 times the diameter of the recorded ball. The
camera takes 25 images per second, i.e. the time between
two successive images δt is fixed and equal to 0.04 s. The
smallest average velocity we observed is 6.6 cm/s, and if
one assumes roughly one collision per glass bead, as found
by Henrique et al. [19], we estimate the time between two
collisions is δt = 0.015 s i.e. the average number of colli-
sions between two frames is 2.6. The highest average ve-
locity is 12.8 cm/s so δt = 7.81×10−3 s which corresponds
to 5 collisions. This means that each frame gives an aver-
age over 3 to 5 collisions. In practice, for each (R, θ) value
we launch twenty balls with the same initial velocity. The
R values we considered are 1.5 mm, 2 mm and 2.5 mm.
The videotapes are visualized image by image and the ball
position is determined and noted at each step on a trans-
parent paper placed on a TV screen. For each pair (R, θ),
we have recorded the paths of the ball on the transparent

paper which is then photocopied and digitized. Each tra-
jectory is saved in a different computer file. The error due
to the distortion linked to the photocopier and the scan-
ner do not exceed one percent. The coordinates (xi,j , yi,j)
of each point of the trajectory are obtained by computing
the barycenters using the image analysis software NIH.
This procedure may seem tedious but the direct process-
ing of data using image processing software is exceedingly
difficult due to multiple light reflections from glass beads
constituting the surface and the weak contrast between
the steel ball and the plane. We can compute for each (R,
θ) pair and for a given trajectory the local velocity com-
ponents vxi,j and vyi,j , the modulus of the local velocity
| vi,j | and the angle αi,j between the direction of the total
velocity and the x-direction. So

vxi,j =
xi,j − xi−1,j

δt
, (2)

vyi,j =
yi,j − yi−1,j

δt
, (3)

| vi,j |=
√
v2
xi,j + v2

yi,j , (4)

αi,j = arctan
vyi,j
vxi,j

, (5)

where j labels the trajectory and i labels the coordinates
for successive δt for a given trajectory.

The mean values Vx, Vy and | V | are calculated for
each R and θ from the local velocities by averaging over
the twenty recorded trajectories as follows:

Vx =
1

N

∑
j,i

vxi,j , (6)

Vy =
1

N

∑
j,i

vyi,j , (7)

| V | =
1

N

∑
j,i

√
v2
xi,j

+ v2
yi,j

, (8)

where N is the total number of velocities summed over all
the trajectories and is different for each (R, θ) value.

3 Experimental results

3.1 Velocities and angles

In this section, we examine the velocities obtained as ex-
plained above. In Figure 2 we show Vx and | V | as func-
tions of sin(θ) for R = 2.5 mm.

We see that both Vx and | V | vary linearly with sin(θ),
and the same behaviour is observed for the other ball sizes.
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Fig. 2. The mean velocity Vx (◦) and the total mean velocity

(�)| V | for R = 2.5 mm as a function of θ.

This behaviour of Vx is in agreement with that found pre-
viously (see Sect. 1). The average velocity can, therefore,
be expressed as:

Vx
√
rg
R−1.25 = D + C sin(θ). (9)

Clearly as θ → 0, Vx does not go to zero. The reason
for that is clear. Recall that the mean constant velocity
regime is defined for θ values between two transition zones
(A)–(B) and (B)–(C). For a given value of R (or Φ =
R/r) the lower limit of region (B) is given by θAB, the
transition angle to the pinning regime (A): for θ < θAB
the ball stops. Therefore, we cannot ask the question of
what happens to Vx as θ goes to zero. The constant, D,
in equation (9) has no physical meaning.

The fact that Vx grows linearly with sin(θ) means that
the velocity dependent component of the friction force de-
pends linearly on the velocity. This friction force, due to
collisions, is therefore viscous. Finally, let us add that in
those experiments the exponent β from the scaling of the
mean velocity with R was found equal to 1.25, which we
write explicitly in equation (9).

Looking now at | V | we see that it is obviously larger
than Vx whatever angle θ is considered, but it increases
more slowly with sin(θ). This can be explained by the
fact that the values of the local vyi,j slightly decrease (as
will be shown in Fig. 5), while the local vxi,j increase, as
the inclination of the rough plane goes up. So the relative
importance of vyi,j decreases as θ increases.

The trajectory recordings give the components of the
local velocities in the direction of the mean flow vxi,j and
perpendicularly vyi,j . In Figure 3, vxi,j is displayed as a
function of vyi,j , for two inclination angles of the rough
surface.

In Figure 3a we see clearly that for small values of θ,
i.e. close to the transition between the regime (A) and (B)
of the phase diagram, strong correlations appear between
the two components. In case (a), when vxi,j is close to zero,
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Fig. 3. The local velocity vxi,j as a function of the compo-
nent vyi,j for R = 2.5 mm and (a) θ = 3.15◦ (shows strong
correlations), (b) θ = 5.6◦ (shows little correlations).

| vyi,j | takes large values, which corresponds to values
of αi,j close to ± 90 degrees as will be seen below, i.e.
the ball deviates completely from the mean flow direction.
For such angles, we cannot consider separately the x and
y direction. As θ increases, the vxi,j values are shifted
towards higher values, as seen in Figure 3b. The vxi,j and
vyi,j are no longer preferentially distributed, and we do not
observe correlations between the components of the x and
y local velocities. In consequence, the x and y direction
can be treated separately.

Figure 4 shows the histogram corresponding to the ve-
locity fluctuations for the tranverse speed vyi,j .

Such a distribution can be well fitted by a Gaussian.
We obtain similar distributions for other (R, θ) values in
the mean constant velocity regime, except for the smallest
θ-values. We will see below that for such small inclination
angles, the motion of the ball is qualitatively different.
From these distributions we can compute the mean square

deviations ∆Vy
2, which are shown in Figure 5.

We observe that the transverse velocity fluctuations

∆Vy
2 decrease as the inclination of the rough surface in-

creases. For a given inclination, the velocity fluctuations
perpendicular to the mean flow are close whatever is the
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Fig. 4. Histogram of the fluctuations of the transverse velocity,
vyi,j , for R = 2.5 mm and θ = 4.9◦.
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Fig. 5. Mean square deviations 〈(∆Vy)
2〉 as a function of sin(θ)

for R = 1.5 mm (4), R = 2 mm (�) and R = 2.5 mm (◦).

size of the moving particle. These results could be linked
to those of transverse diffusion (see below).

Another way of studying the motion is to investigate
the angular fluctuations. Using the local velocities vxi,j
and vyi,j we have analysed the distributions of the angles
of deviation αi,j defined above as the angle between vi,j
and vxi,j . This study was done for each pair (R and θ)
and over twenty trajectories. Figure 6 shows typical dis-
tributions of the deviation angle.

All the experimental distributions were found to be
fitted well by Gaussians, when the angles θ considered are
far from the transition between the regime (A) and (B), as
in Figure 6b. However, it can be seen in Figure 6a that for
small θ, i.e. very close to the A–B transition of the phase
diagram two little bumps are localized at −90◦ and 90◦

which means that the ball may deviate completely from
the x direction. This observation is in agreement with the
results found from the velocity correlations (in Fig. 3a).
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Fig. 6. Typical distributions for the angles αi,j =
arctan(vyi,j/vxi,j ) for R = 2.5 mm, (a) θ = 2.6◦ and (b) θ =
4.9◦.

3.2 Transverse dispersion

In order to analyse the transverse dispersion for a given θ,
R, and L, we count the balls in each bin of the collector for
each of the three release points and we sum the counts for
these three experiments. We compare all the distributions
obtained for R, θ and L by computing the mean square
deviations ∆y2 of the Gaussian distribution. In order to
do so, we plot the cumulated frequencies on a galtonian
paper versus the number of bins, i.e. the abscissa. The
width of the distribution for given values of R, θ, L is
not exactly the same depending on the position where the
balls are released. Nevertheless we have verified that this
difference is weak and does not exceed three percent in an
experiment performed on 3600 launched balls. For given
R and θ values, L is increased from 80 cm to 170 cm in
steps of 15 cm. ∆y2 is found to increase linearly to L

∆y2 = a(R, θ)L (10)

which is shown in Figure 7. If V0 is much higher than Vx
the moving ball has to experience a longer transient dy-
namics before reaching the steady state regime and an ad-
ditive constant appears in equation (10), which depends
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Fig. 7. Variation of the mean square deviation, ∆y2, with L
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(4), R = 2 mm (�), R = 2.5 mm (�), R = 3 mm (◦), R =
3.5 mm (/).

on the initial velocity V0. Nevertheless the slope a(R, θ),
which characterizes the dispersion is not affected. The only
way to modify or introduce another effect on the disper-
sion is to change the direction of the initial velocity of the
ball which in the present study was carefully controlled. In
our experiments V0 is chosen always close to Vx for a given
couple (R, θ) values, which implies that the equation (10)
is always verified.

Equation (10) indicates that the moving balls have
a diffusive behaviour in the direction perpendicular to
the mean flow. These experiments were performed in the
regime (B), characterized by a constant velocity, i.e. the
mean transit time tc grows linearly with the travelled dis-
tance L. So equation (10) corresponds to a diffusive be-
haviour analogous to a classic random walk as for brown-
ian motion. It can be seen that in our case, the diffusion
is not due to thermal agitation because of the size of the
moving particles. From Figure 8 it can be clearly seen that
all the data fall on the same curve, i.e. a(R, θ) does not de-

pend on the radius, R, of the moving ball, at least for the
sizes of the particles studied.

Moreover a(R, θ) decreases as sin(θ) goes up. In fact
this curve is an hyperbola, i.e. a(R, θ) can be written as a
function of 1/ sin(θ):

a(R, θ) =
A

sin(θ)
+B. (11)

In our experiments the fit gives respectively for A and
B, 0.024 cm and −0.065 cm. The length a(R, θ) can be
regarded as the characteristic length scale, i.e. the veloc-
ity correlation length of the system. As seen in Figure 8,
a(R, θ) ranges from about 0.1 cm for large θ to about 0.6 cm
for small θ (close to the diameter of the largest steel balls
used in the figure, 0.7 cm). The small characteristic length
corresponding to large angles is of the same order as the
size of the beads on the surface. this can be understood
from experiments [19] and numerical simulations [16] that
show that for large angles, the moving ball travels on av-
erage one bead diameter between two collisions. The fluc-
tuations in the velocity (direction and magnitude) are due
to these collisions and, for larger inclinations, the velocity
of the ball is large enough, that it can bounce on and over
the tops of the surface beads on its way down the plane.
Thus, these collisions induce uncorrelated fluctuations in
the x and y velocities (see Fig. 3b). On the other hand,
when θ decreases, the characteristic length goes up. The
nature of the motion is modified: the ball follows paths
that offer low potential barriers, i.e. the valleys formed on
the surface. These low potential barriers are not only due
to the geometry, but to a combination of the geometry
and the energy the moving ball. In this region, the char-
acteristic length scale in Figure 8 becomes larger than the
rough surface bead size and is closer to the moving ball
size. In this case the velocity correlation length becomes
of the same order as the rolling ball size. It seems that
for this range of angles the ball travels the rough plane by
rolling rather than bouncing. Dippel et al. [16] have shown
numerically that rotation should not be neglected at small
inclination angles. At the moment, this effect cannot be
studied experimentally. In addition, numerical simulations
[20], taking into account only the geometry, have shown
the important role played by it in such systems. Moreover,
in these simulations, the same value of a(R, θ) for a given
θ is found for different values of R. When θ becomes very
small, i.e. close to the transition between the regions (A)
and (B), the motion is not truly diffusive since, for exam-
ple, when the x velocity goes down, it is because the ball
made a turn to follow the valley and, consequently, the
y velocity goes up (see Fig. 3a and the discussion in the
following section).

Let us consider now the coefficient of diffusion Dy of
this random walk and the influence of the rolling ball size
and the inclination angle of the surface. Equation (10)
may be rewritten:

∆y2 = 2Dytc, (12)
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where tc is the mean time needed to travel the distance
L. Therefore

∆y2 = 2Dy
L

Vx
, (13)

and

Dy =
Vx

2

∆y2

L
=
Vx

2
a(R, θ). (14)

For a given ball size, we find that the transverse coeffi-
cient of diffusion decreases as θ goes up. Moreover, this
decrease is greater with increasing values of R. We found
that all the data for the different R values collapse on the
same curve if we scale Dy by R−1.25 for the range of in-
clination angles studied. This is shown in Figure 9. This
dependence of Dy on sin(θ) can be very easily understood
by substituting equations (9, 11) in equation (14).

Another way to calculate the transverse coefficient of
diffusion is to do it from the velocity fluctuations as for
a particle falling in a fluid in which there is a given con-
centration of particles [21]. This method can be used for
the transverse diffusion as well as for the longitudinal dif-
fusion. The velocity fluctuations are obtained from the
trajectory recordings. Unfortunately, these trajectories are
not long enough to have a sufficiently good statistics. Nev-
ertheless the coefficients of diffusion obtained by this way
are of the same order of magnitude as those presented
here.

3.3 Longitudinal dispersion

By analogy with studies on fluid flows in porous media, the
tracer dispersion process can be described by a convection-
diffusion equation [22]:

∂c(x, t)

∂t
+ (v ·∇)c(x, t) = D‖∆‖c(x, t) +D⊥∆⊥c(x, t)

(15)
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Fig. 10. Transit time distributions at the different laser posi-
tions for R = 3 mm and θ = 4.6◦.

where c(x, t) is the tracer concentration at a given posi-
tion x, at time t, with a mean velocity v. ∆‖ and ∆⊥ are
respectively the gradients in the parallel direction to the
mean velocity and perpendicular to it. D‖ and D⊥ are re-
spectively the longitudinal and the tranverse coefficients
of diffusion. In porous media, these coefficients are closely
linked to the disordered structure of the velocity field in
the pores space and permit to characterize the media. This
equation is observed in several situations and we consider
the case of the asymptotic behaviour predicted by the cen-
tral limit theory. When the mean flow is in one direction,
dispersion in the transverse direction can be neglected in
comparison to the longitudinal one and equation (15) is
then one-dimensional. In the case of the rough plane, such
a simplification cannot be made. The time fluctuations are
sufficiently small for a given abscissa in comparison with
the mean transit time between two consecutive measure-
ment abscissae. This is verified for most of the (R, θ) cou-
ples under consideration. For each pair (R, θ) we measure
and record the transit time between the laser beams for
each particle all in region (B). The timer is triggered by
the first laser x0 (cf. Fig. 1) placed just at the exit of the
launcher but at this point the ball has not yet reached its
stationary state. The second laser x1, chosen as the refer-
ence, is placed far enough down the plane to ensure that
the ball has achieved its constant average velocity. The
transit time distributions obtained at the different laser
positions xi are displayed in Figure 10. These distribu-
tions are very well fitted by Gaussians. Nevertheless when
the inclination angle of the rough surface becomes small
enough for a given R, a tail at long time appears. This tail
is longer the smaller θ gets. To begin with, we will focus on
the cases of θ and R for which the tail of the distribution
may be neglected. We have computed the corresponding
first and second moments of the particle transit time dis-

tribution t and ∆t2 = t2− t
2
. The first moment is used to

calculate the constant mean velocity, while the second mo-
ment characterizes the particle dispersion. ∆t2 is related
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Fig. 11. Variation of the mean square deviation of the transit
time of the ball on the rough surface with the mean transit
time for R = 3 mm, and θ = 2.9◦ (◦), θ = 3.75◦ (square),
θ = 4◦ (�), θ = 4.3◦ (4).

to the longitudinal dispersion coefficient Dx by [23]:

Dx =
Vx

2

2

∆t2

t
· (16)

In Figure 11, ∆t2 is displayed as a function of t obtained
from the gaussian fit for R = 3 mm and for several inclina-
tion angles. We see that the linear variation predicted by
equation (16) is well satisfied for sufficiently large angles θ
and corresponds to diffusive behaviour. It can be noticed
that ∆t2 decreases while the inclination angle goes up, for
a given mean transit time t.

On the other hand, at small angles we observe devi-
ations from linear behaviour (cf. Fig. 11 for θ = 2.9◦).
These deviations occur for the same angles where we have
found strong correlations between the x and y components
of the velocities and emphasize the presence of another
type of behaviour. This behaviour can be explained by
the velocity correlations (in Fig. 3a) caused by the fact
that the ball follows valleys of low potential energy bar-
riers, as discussed in the previous section. This departure
of (∆t)2 from linearity indicates that at small angles of
inclination the motion is not diffusive. This being the case
for the longitudinal case, it must also be true for trans-
verse motion. We could not have verified this using the
video measurements because we lacked the high statistics
needed.

For most values of R and θ, the behaviour was found to
be diffusive and the corresponding local velocities in the
x and y directions were decorrelated. Using equation (16)
we determine the diffusion coefficient, Dx, which is shown
in Figure 12 as a function of the inclination angle θ for
all R values studied. For all values of R, we see that as
θ increases Dx approaches the limiting value 0.15 cm2/s.
The angle at which this value is reached depends on R but
the limiting value of Dx does not. A possible explanation
of this is as follows. As θ is increased, the velocity of the
ball increases, and bouncing becomes the dominant mode
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Fig. 12. Variation of the longitudinal dispersion coefficient Dx
as function of the mean velocity sin(θ) by the laser measure-
ments: R = 1.5 mm (4), R = 2 mm (square), R = 2.5 mm,
(�), R = 3 mm (◦), R = 3.5 mm (/).

of motion and the typical length is governed in this case by
the mean separation between grains of the surface. When
bouncing dominates, the ball sees mainly the tops of the
beads on the surface with which it collides regardless of
R. Since the nature of these collisions is the same for all
R (since they all take place at the top of the beads) they
lead to the same values for Dx.

As for the case of transverse diffusion, one could define
a longitudinal characteristic length ld which is the ratio of
Dx over Vx. From the values of Dx and Vx we see that
ld is smaller than 1 mm ( 0.1 mm < ld < 0.4 mm ).
That is the longitudinal length is smaller than the smallest
typical length of the system which is the typical distance
between the glass beads constituting the rough surface. So
ld seems not to be the actual characteristic length. We are
unable to explain physically why ld takes such small val-
ues. Nevertheless the comparison with the transverse dif-
fusion shows that the longitudinal length is much smaller
than the transverse one. This is opposite to what is ob-
served in porous media: transverse dispersion is neglected
compared to the longitudinal one, and is imposed by the
mean flow. In addition, when the porous medium is ho-
mogeneous and unconsolidated, the characteristic length
is found to be of the order of magnitude of the bead sizes.
In this sense, the ball motion in a rough surface shows a
surprising behaviour where anisotropy is not determined
by the direction of the mean velocity.

4 Discussions and conclusions

Dispersion measurements in fluid flow in porous media are
an important tool for obtaining information about length
scales that characterize the geometrical heterogeneities of
the medium. The dispersion coefficients are very sensitive
to the velocity fluctuations linked to the random geometry.

The dispersion measurements we carried out on the
rough plane gave similar interesting information. We
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found for the motion of the ball on the rough plane in
regime (B) that the ball has two different behaviours: for
a given R and for θ large enough, the motion is diffusive
and the characteristic length is of the order of 1 mm (the
mean size of the bumps on the surface), showing that it is
governed by the geometry of the surface. In this regime,
the fluctuations in the x and y components of the velocity
are independent and are caused by the random collisions
between the moving ball and the surface bumps. The main
mechanism for energy dissipation, therefore, appears to be
collisional.

However, for small θ, i.e. close to the transition be-
tween the pinning zone (regime (A)) and the constant
velocity one (regime (B)), this diffusive character seems
to disappear. Instead, we find that there are very strong
correlations between the fluctuations of the x velocity and
those of the y velocity. This is due to the fact that for small
velocities, i.e. small θ, the ball mostly follows valleys of
smallest potential barriers. Thus the x and y motions are
strongly correlated and the diffusive behaviour vanishes.
Here the characteristic length increases up to values of the
sizes of the rolling ball.

Molecular dynamics simulations of a sphere moving
down an inclined plane consisting of similar spheres of
smaller size [15,16] have been performed. From these sim-
ulations, the motion of the particles was studied in detail.

These simulations yield results that are in very good
qualitative and quantitative agreement with the exper-
iments. The main difference between the two is due to
uncertainties in the coefficients restitution needed in the
simulations. This seems to cause numerical simulations to
give a region (B) which is a little narrower than the ex-
perimental results. The simulations found the motion to
be diffusive both in the transverse and longitudinal di-
rections with values similar to the experimental ones. In
particular, Dx and Dy were found to behave differently,
just as in our experiments. A similar anisotropy is found in
porous media or in sedimentation, but the diffusion coeffi-
cient corresponding to the mean direction velocity motion
is larger than the one corresponding to the transverse di-
rection [24]. In our cases, the reverse is true.
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